
Quick-Reference Guide
to Optimization
with Intel® Compilers

For Intel® Pentium® 4 and
Intel® Itanium® Processor Families

 ��������
Application Performance
 �����������������������

For product and purchase information visit:
www.intel.com/software/products

Fine-Tuning
Once you have identified performance hot-spots, you may need to provide the
compiler with more information to fine-tune specific functions. The Optimization
and Vectorization Reports may show places where loops could not be optimized
fully due to pointer aliasing or memory access overlaps, for example. Also, the
Intel® C++ and Fortran Compilers User’s Guides include details on other #pragmas,
directives, and intrinsics that can be used to control software-pipelining, unrolling,
vectorization, and prefetching for further fine-tuning within your application code.

Windows§
Command

Linux§

Command
Comment

/Qunroll[n] -unroll[n] Sets the maximum number of times
to unroll loops. -unroll0 disables loop
unrolling. The default is -unroll, which
uses default heuristics.

/Qrestrict[-] -[no]restrict Enables/disables pointer disambiguation
with the restrict qualifier.

-falias Assumes aliasing in the program.
(C++ Linux only)

-ffnalias Assumes aliasing within functions.
(C++ Linux only)

/Oa -fno-alias Assumes no aliasing in program.

/Ow -fno-fnalias Assumes no aliasing within functions, but
assumes aliasing across calls.

/Qalias_args[-] -alias_args[-] Implies arguments may be aliased [not
aliased].

/Qopt_report -opt_report Generates an optimization report directed
to stderr.

/Qopt_report_
filefilename

-opt_report_
filefilename

Specifies the filename for the optimization
report.

/Qopt_report_
levellevel

-opt_report_
levellevel

Specifies the verbosity level of the output.
Valid arguments are min (default), med, max.

/Qopt_report_
phase name

-opt_report_
phase name

Specifies the compilation name for
which reports are generated. The option
can be used multiple times in the same
compilation to get output from multiple
phases. Valid name arguments:

ipo: Interprocedural Optimizer
hlo: High Level Optimizer
ilo: Intermediate Language Scalar
 Optimizer
ecg: Code Generator
omp: OpenMP§
all: All phases

/Qopt_report_
routine [rtn]

-opt_report_
routine [rtn]

Specifies a routine rtn. Reports from
all routines with names that include
rtn as part of the name are generated.
By default, reports for all routines are
generated.

/Qopt_report_help -opt_report_help Displays all possible settings for
-opt_report_phase. No compilation is
performed.

Copyright © 2004, Intel Corporation. All Rights Reserved. Intel, the Intel logo, Itanium, Pentium, Intel
Centrino, Intel Xeon, Intel XScale, and VTune are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

§ Other names and brands may be claimed as the property of others.

0204/JXP/ITF/PT/3K
254349-002

Windows§
Command

Linux§
Command

Comment

/Qopenmp -openmp Enables the parallelizer to generate multi-
threaded code based on the OpenMP§
directives.

/Qopenmp_
report{0|1|2}

-openmp_
report{0|1|2}

Controls the OpenMP parallelizer’s
diagnostic levels. The default is
/Qopenmp_report1.

/Qparallel -parallel Detects parallel loops capable of
being executed safely in parallel and
automatically generates multithreaded
code for these loops.

/Qpar_
report{0|1|2|3}

-par_
report{0|1|2|3}

Controls the auto-parallelizer’s diagnostic
levels as follows:

0: displays no diagnostic information.
1: indicates loops successfully parallelized
 (default).
2: loops successfully and unsuccessfully
 parallelized.
3: adds information about any proven
 or assumed dependencies inhibiting
 parallelization.

/Qpar_
threshold[n]

-par_
threshold[n]

Sets a threshold for the auto-
parallelization of loops based on the
probability of profitable execution of the
loop in parallel, n=0 to 100. Default: n=75.
This option is used for loops whose
computation work volume cannot be
determined at compile time.

0: parallelize loops regardless of
 computation work volume.
100: parallelize loops only if profitable
 parallel execution is almost certain.

Parallel Performance
The following options allow the compiler to help you parallelize your application
for multi-processor or Hyper-Threading Technology capable systems.

Windows§
Command

Linux§
Command

Comment

/G1 -tpp1 Targets optimization for the Itanium
processor.

/G2 -tpp2 Targets optimization for the Itanium 2
processor. Generated code is also
compatible with the Itanium processor.
(Default)

/QIPF_fma[-] -IPF_fma[-] Enables [disables] the combining
of floating-point multiplies and add/
subtract operations.

/QIPF_fp_
speculationmode

-IPF_fp_
speculation
mode

Enables floating-point speculations
with one of the following modes:

fast−Speculate floating-point
operations.
off−Disables speculation of floating-
point operations.
safe−Speculate only when safe.
strict−This is the same as specifying
off.

/Qftz[-] -ftz[-] Flushes denormal results to zero.
The option is turned ON with -O3
by default. This only impacts the
application when the main program
or dll main is compiled.

/Qivdep_parallel -ivdep_parallel Indicates there is absolutely no loop-
carried memory dependency in the
loop where the IVDEP directive is
specified.

/QIPF_fltacc[-] -IPF_fltacc[-] Enables [disables] optimizations that
affect floating-point accuracy.

/QIPF_flt_eval_
method{0|2}

-IPF_flt_eval_
method0

Evaluates floating-point operands to
the precision indicated by the program.

Intel® Itanium® Processor-Specific Optimization
In general, -O3, IPO and/or PGO, and utilizing the Optimization Reports (in
the Fine-Tuning section) to control aliasing and improve memory utilization,
provides the best performance for Intel® Itanium® processor-based systems.

A Step-by-Step Approach to Application
Tuning with Intel Compilers

Before you begin performance tuning, ensure that
your application runs as intended with a base set
of options or in debug-mode (-Od and -Zi).

1. Use the Automatic Optimization Options
(-O1, -O2, or -O3) and determine which
one works best for your application by
measuring performance with each.

1. Add in Interprocedural Optimization
(IPO) and/or Profile-Guided Optimization
(PGO) and again measure performance to
determine if your application benefits from
either of them.

2. Fine-tune performance with the
processor-specific options to target
IA-32 or Intel® Itanium® processor
systems specifically. This step works best
by identifying performance “hot-spots”
with the Intel® VTune™ Performance
Analyzer so you know which parts of your
application need specific tuning. Also,
the Intel Compiler’s Optimization Reports
show where the compiler could use more
of your help.

3. Run your applications on multi-processor
or Hyper-Threading Technology capable
systems using Parallel Performance
options.

IA-32 Processor-specific Optimization
These options allow you to tune performance specifically for the Intel processor-based systems you are targeting. As with each previous step, measure the
performance benefit of each option to guide your decisions. Use the Intel Compilers’ Optimization Reports to assist in determining whether you can provide more
help to the compiler in the form of anti-aliasing or memory disambiguation information.

IA-32-Specific Optimization Recommendation: Use the -QaxN (-axN on Linux), new in the 8.0 compilers, for best performance across all Intel® Pentium® 4
processors and the Pentium M processor. (You may also want to experiment with -QaxB (-axB) on Pentium M processors.)

Windows§

Command
Linux§
Command

Comment

/Qax{K|W|N|B|P} -ax{K|W|N|B|P} Automatic Processor Dispatch. Generates specialized code for the indicated processors while also generating
generic IA-32 code. You can use more than one code to tune for multiple processors in the same executable.

K - Intel Pentium III and compatible Intel processors
W - Intel Pentium 4 and compatible Intel processors
N - Intel Pentium 4 and compatible Intel processors
B - Intel Pentium M and compatible Intel processors
P - Intel Pentium 4 processor with Streaming SIMD Extensions 3 and compatible Intel processors

Beginning with Intel Version 8 compilers, K and W are deprecated and will be removed from future releases. N
provides additional Pentium 4 processor tuning beyond W.

/Qx{K|W|N|B|P} -x{K|W|N|B|P} Processor-specific Targeting. Generates specialized code for the indicated processor. The executable should
only be run on the targeted compatible processors.

K - Intel Pentium III and compatible Intel processors
W - Intel Pentium 4 and compatible Intel processors
N - Intel Pentium 4 and compatible Intel processors
B - Intel Pentium M and compatible Intel processors
P - Intel Pentium 4 processor with Streaming SIMD Extensions 3 and compatible Intel processors

Beginning with Intel Version 8 compilers, K and W are deprecated and will be removed from future releases. N
provides additional Pentium 4 processor tuning beyond W.

N, B, and P generate a run-time check to determine that the correct compatible Intel processor is used to
prevent potential run-time faults that could otherwise occur with K and W.

/Qprefetch[-] -prefetch[-] Enables or disables prefetch insertion (requires -O3).

/Qfp_port -fp_port Rounds floating-point results after floating-point operations, so rounding to user-declared precision happens
at assignments and type conversions; this has some impact on speed. The default is to keep results of
floating-point operations in higher precision. Use this if you are experiencing differences in floating-point
precision versus other platforms.

/Qvec_report{0|1|2|3|4|5} -vec
_report{0|1|2|3|4|5}

Controls amount of vectorizer diagnostic information as follows:
n = 0: no information
n = 1: indicates vectorized loops (default)
n = 2: indicates vectorized and non-vectorized loops
n = 3: indicates vectorized and non-vectorized loops and prohibits
 data dependence information
n = 4: indicates non-vectorized loops
n = 5: indicates non-vectorized loops and prohibits data
 dependence information

Interprocedural Optimization (IPO) and
Profile-Guided Optimization (PGO) Options
IPO controls function-inlining to reduce function call overhead and improve data
layout across functions. PGO provides run-time feedback to guide optimization
decisions about data and code layout to improve instruction-cache, paging
and branch prediction. IPO can increase code size. Be sure to measure your
execution performance, compile-time, and code-size tradeoffs with these
options. IPO is best used in conjunction with PGO to guide which functions
to inline.

Windows§

Command
Linux§

Command
Comment

/Qip -ip Single file optimization. Allows selective
inlining optimization within a single
source file.

/Qipo -ipo Multi-file optimization. Permits inlining
and other optimizations among multiple
source files.

/Qprof_gen -prof_gen Instruments a program for profiling.

/Qprof_dirdir -prof_dirdir Specifies a directory for the profiling
output files, *.dyn and *.dpi.

/Qprof_use -prof_use Enables use of profiling information during
optimization.

Profile-Guided Optimization (PGO) Steps
IA-32-Specific Optimization Recommendation: Use the –QaxN (-axN on Linux)

for best performance across all Pentium 4 processors and the Pentium M
processor. (You may also want to experiment with –QaxB (-axB) on Pentium M

processors.)
Step One

Compile with
PGO

Step Three
Feedback Compile

with PGO

Step Two
Run instrumented

application to produce
Dynamic Information Files

Instrumented
 Executable

Profile-Guided
Application

Dynamic
Information

Summary File

foo.exe

Automatic Optimization Options
Before you begin performance tuning, ensure that your application runs as
intended with a base set of options or in debug mode (-Od and-Zi). These
are general optimization options that should be at the heart of any application
tuning for Intel® Pentium® 4 and Itanium® processors. Try these different
options and measure your performance before proceeding to more advanced
optimizations.

Windows§

Command
Linux§
Command

Comment

/Od
(No Optimization)

-O0 No optimization. Useful during
application development and
debugging.

/O1
(Optimize for size)

-O1 Omits optimizations that tend to
increase object size. Creates the
smallest optimized code in most
cases. On Linux systems with
IA-32 processors only, there is no
difference between -O1 and -O2.

This option has proven useful
in many large server/database
applications where memory paging
due to larger code size is an issue.

/O2
(Maximize speed)

-O1 or -O2 Default setting. Creates the fastest
code in most cases, but may
increase code size significantly
over /O1. On Linux systems with
IA-32 processors, -O1 and -O2 are
equivalent.

/Ox
(Maximize
optimization)

n/a Equivalent to /O2 except that
/Ox does not imply /Gy (function
packaging) or /Gf (string pooling).

/O3
(High-level
optimizations)

-O3 Same as /O2, plus loop
transformations and data
prefetching for improved memory
usage efficiency. For the full benefit
of /O3 on Intel 32-bit processors,
also use the /Qx{K, W, N, B, P}
or /Qax{K, W, N, B, P} options
for Pentium III and Pentium 4
processors and subsequent IA-32
processors.

This option has proven useful for
a broad range of applications,
particularly loopy, kernel-based
code common in high-performance
computing.

/Zi -g Generates debug information
for use with any of the common
platform debuggers.

Comment

